Neutrino Signatures from the First Stars

Cosmic Chemical Evolution
 Early Reionization and Massive Stars
 Neutrino production and predicted fluxes

Daigne,Olive,Sandick,Vangioni Daigne,Olive,Silk,Stoehr,Vangioni

Elements of Cosmic Chemical Evolution

 $\overset{\circ}{\circ}$ Star Formation Rate, Ψ

- Greatly enhanced at high redshift
- $\overset{\circ}{\circ}$ Initial Mass Function, ϕ
 - Bimodal distribution including massive mode
- Element Production
 - compared against observations in DLAs, the IGM and iron-poor stars
- Supernovae Rates

Evolution of Structure

Structure growth based on Press-Schechter formalism

WMAP and Reionization

WMAP cross power spectrum \Rightarrow Universe reionized at high redshift z ~ 15 \Rightarrow population of massive stars

Kogut et al. Cen Haiman & Holder Wyithe & Loebe Bromm Ciardi et al.

Bimodal Star Formation

 $B(m, t, Z) = \Phi_1(m)\Psi_1(t) + \Phi_2(m)\Psi_2(Z)$ Normal Mode of Star Formation $0.1 < M_{\odot} < 100$ Model 0 Massive Mode $40 < M_{\odot} < 100$ 8 Model 1 $140 < M_{\odot} < 260$ 2 Model 2a $270 < M_{\odot} < 500$ 2 Model 2b

HEGER & WOOSLEY

MiniHalos and the onset of star formation Input Parameters

Minimum Halo Mass: 10⁶, 10⁷, 10⁸, 10⁹, 10¹¹ M_☉
 Onset of Star formation: f_b = 0.01
 determines initial redshift for star formation
 Critical Metallicity: Z_c Bromm & Loeb Yoshida et al.

Efficiency of outflow

Normal Mode of Star Formation

$$\Psi(t) = \nu_1 \exp\left(-(t - t_{\text{init}})/\tau_1\right) + \text{Salpeter IMF}$$

Time (Gyr)

Eg. Hopkins

Consequences

Ionization

Chemical Evolution

Very Massive Stars

Generally assumed that the first
generation of stars were very massive

Pair-instability supernovae

Heger & Woosley

🗳 total disruption

- significant metal production
- difficulty to reionize

300+ solar mass stars

- total collapse
- no metal production
- efficient at reionization

Neutrino Production

There is an accumulated flux of supernova relic neutinos

Totani & Sato (1995) + Yoshi (1996)

Ando, Sato, & Totani (2003) Ando (2004)

Kaplinghat, Steigman, & Walker (2000)

Strigari et al. (2004, 2005)

Iocco et al. (2005)

Calculation Inputs

Final State

 $\stackrel{\circ}{\Rightarrow}$ neutron star $8M_{\odot} < m < 30M_{\odot}~E_{
u} = 3-5 imes 10^{53} ergs$ \sim black holes $m < 100 M_{\odot} \; E_{
u} \sim .16 (m-20 M_{\odot})$ PISN $E_{\nu} = 3 - 5 \times 10^{53} ergs$, but $\langle E_{\nu} \rangle = 1.2$ MeV Solution black Holes $E_{\nu} = 0.3m$ Average neutrino energy $\langle E_{
u_{e}}
angle = 13.3 \mathrm{MeV}$ 8 8 $\langle E_{ar{
u_e}}
angle = 15.3 \mathrm{MeV}$ Totani et al. Keil et al. $\langle E_{
u_x}
angle = 20.0 \mathrm{MeV}$ 8 Iocco et al.

More inputs

Normal Mode Fluxes

Neutrino Flux for the massive mode of model 1

model 1e is an extreme model where 90% of the IGM
 metallicity is produced by the massive mode

Neutrino Flux for the very massive pop III stars of model 2

Total Neutrino Fluxes

Detectability

SuperK flux limit: $1.2 \text{ cm}^{-2} \text{s}^{-1}$ for $E_{\nu} > 19 \text{ MeV}$

$$F(E_{\rm thresh}) = \int_{E_{\rm thresh}}^{\infty} \frac{dF}{dE} dE$$
 Malek et al.

Model comparisons to flux limit

Model	SK Flux
2.0	1.8
2.1	1.8
$2.1 \mathrm{osc}$	3.2
2.1e	1.9
2.2a	1.9
2.2ae	1.9
2.2b	1.8
2.2bosc	3.2

All models exceed upper limit!! Sensitivity to assumed v energies

 $F(19.3) < 1.2 \text{ cm}^{-2}\text{s}^{-1} \Rightarrow$ $< E_v > < 13.3 \text{ MeV}$

A Non-burst model

Rather than a rapid burst of pop III stars - an early more drawn out population

start at z = 30

Star formation rate: $\Psi_2(t) =
u_2 M_{ISM} \exp\left(-Z_{IGM}/Z_{
m crit}
ight),$

Pop III neutrino fluxes

Total Neutrino Fluxes

Total Neutrino Fluxes

Summary

- Reionization and metal enhancement play a role in determining the nature of early star formation
- Star formation at a redshift of 3-5 is greatly enhanced relative to today
- Neutrino signature should be observable!!
- Though there is a strong sensitivity to SN neutrino energetics