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• Greatly enhanced at high redshift

Initial Mass Function, φ

• Bimodal distribution including massive mode

Element Production

• compared against observations in DLAs, the 
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inferred for SNIa to fit the data. § 5 is devoted to the addition of an initial starburst of

massive stars in our scenario. We summarize our results in § 6.

2. Hierarchical formation scenario and associated galactic winds

2.1. A cosmic evolutionary model

The chemical evolution model used in this paper has been described in DOVSA. It is a

generalized version of standard models designed to follow one specific structure such as the
Milky Way (for a review, see Tinsley (1980)). We describe baryons in the Universe by two
large reservoirs. The first is associated with collapsed structures (hereafter the “structures”)

and is divided in two sub-reservoirs: the gas (hereafter the “interstellar medium” or ISM)
and the stars and their remnants (hereafter the “stars”). The second reservoir corresponds

to the medium in between the collapsed structures (hereafter the “intergalactic medium”
or IGM). The evolution of the baryonic mass of these reservoirs, i.e. MIGM(t) of the IGM,

MISM(t) of the ISM and M∗(t) of the stars is governed by a set of differential equations (see
section 2 in DOVSA):

dMIGM

dt
= −

dMstruct

dt
= −ab(t) + o(t), (1)

dM∗

dt
= Ψ(t) − e(t) and

dMISM

dt
=

dMstruct

dt
−

dM∗

dt
. (2)

In addition, we have MISM(t) +M∗(t) = Mstruct(t), corresponding to the total baryonic mass
of the structures, and MIGM(t) + Mstruct(t) = constant, which is the total baryonic mass of

the Universe. As can be seen, these equations are controlled by four rates which represent
four fundamental processes (see sketch in Figure 1): the formation of structures through

the accretion of baryons from the IGM, ab(t); the formation of stars through the transfer of
baryons from the ISM, Ψ(t); the ejection of enriched gas by stars, e(t) and the outflow of

baryons from the structures into the IGM, o(t).

We track the chemical composition of the ISM and the IGM separately as a function

of time (or redshift). The differential equations governing the evolution of the mass fraction
X ISM

i (X IGM
i ) of element i in the ISM (IGM) are given by equations (6) and (7) in section

2 in DOVSA. In addition, we also compute the ionizing UV fluxes from the stars (equation
(12) in section 3 in DOVSA) and the rate of explosive events (type Ia and gravitational
collapse supernovae).
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is fPS(M, z)dM , with
∫

∞

0

dM MfPS(M, z) = ρDM , (4)

where ρDM is the comoving dark matter density. The distribution function of halos fPS(M, z)

is computed using the method described in Jenkins et al. (2001) using a code provided by
A. Jenkins. It follows the standard theory (Press & Schechter 1974), including the modifica-
tion of Sheth & Tormen (1999) and assumes a primordial power spectrum with a power-law

index n = 1 and the fitting formula to the exact transfer function for non-baryonic cold dark
matter given by Bond & Efstathiou (1984). We adopt a rms amplitude σ8 = 0.9 for mass

density fluctuations in a sphere of radius 8 h−1 Mpc.

We assume that the baryon distribution traces the dark matter distribution without
any bias so that the density of baryons is just proportional to the density of dark matter

by a factor Ωb/ (Ωm − Ωb). We take a baryonic density Ωb = 0.044 (Spergel et al. 2003).
We parametrize the fact that stars can form only in structures which are suitably dense by

defining the minimum mass Mmin of a dark matter halo of the collapsed structures where
star formation occurs. This mass could be related in principle with the critical temperature
at which the cooling processes become efficient enough to allow star formation. In fact, this

critical temperature, and hence the minimum mass Mmin, should evolve with redshift z as the
cooling processes of the hot gas in structures depend strongly on the chemical composition

and ionizing state of the gas. It is however beyond the scope of this study to include such a
detailed analysis so we prefer to keep Mmin constant and to consider it as a free parameter

of the model. The fraction of baryons at redshift z which are in such structures is then given
by

fb,struct(z) =

∫

∞

Mmin
dM MfPS(M, z)

∫

∞

0 dM MfPS(M, z)
. (5)

Therefore, the mass flux ab can be estimated by

ab(t) = Ωb

(

3H2
0

8πG

) (

dt

dz

)−1 ∣

∣

∣

∣

dfb,struct

dz

∣

∣

∣

∣

= 1.2h3 M#/yr/Mpc3

(

Ωb

0.044

)

(1 + z)
√

ΩΛ + Ωm (1 + z)3

∣

∣

∣

∣

dfb,struct

dz

∣

∣

∣

∣

. (6)

This is the new expression of ab(t) used in the model. Even if it represents a significative
improvement compared to the treatment of the same term in DOVSA, one should keep in

mind that this derivation is only partially consistent, as the actual fraction of baryons in
collapsed structures with dark matter halos of mass M ≥ Mmin will differ from the value

given by equation 5 due to the outflow of baryons from the star-forming structures towards

ab ∝
dfb

dt



WMAP and Reionization

WMAP cross power spectrum ⇒ Universe 
reionized at high redshift z ~ 15 ⇒
population of massive stars
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3) stars with masses in the range 270 – 500 M!, Model 2b; these stars terminate as black

holes through total collapse and do not contribute any metal enrichment.

In all cases, we assume a bimodal birthrate function of the form

B(m, t, Z) = Φ1(m)Ψ1(t) + Φ2(m)Ψ2(Z) (17)

where the two IMFs are normalized independently as in eq. (16). The SFR, Ψ2, is now
expressed as a function of metallicity and cuts off once a critical metallicity is reached, as

described below. Furthermore, we assume the same slope of the IMF, x1 = x2 = 1.3 so that
Φ1 and Φ2 differ only in their mass range. In principle, we can choose to start the normal
mode of star formation either simultaneously with the massive mode, or sequentially, that

is, when the Z > Zcrit. In the latter case, one can argue that the initial injection of metals
by Pop III stars is responsible for the formation of the first extremely metal poor Pop II (or

Pop II.5) stars (Mackey et al. 2003; Salvaterra et al. 2004; Johnson & Bromm 2005). Since
critical metallicity is achieved very rapidly (within 3 Myr), our results for these two choices

are almost indistinguishable.

As the cooling process of the gas depends strongly on its chemical composition, it is

believed that the evolution of the mass range of the IMF is mainly governed by the global
metallicity (Fang & Cen 2004). As noted above, we assume a transition from population III

to the normal formation mode at a critical metallicity Zcrit (Bromm & Loeb 2003; Yoshida
et al. 2004) by defining the SFR of the massive mode by

Ψ(t)2 = ν2 exp (−Z/Zcrit) , (18)

with ν2 = f2mstruct(t). We adopt Zcrit/Z! = 10−4 .

Because the massive stars adopted in Models 1 and 2a are efficient in producing heavy

elements, the duration of the massive phase in these models is relatively brief. In contrast,
no heavy elements are produced in Model 2b, and therefore, the massive mode continues to
affect the evolution of structures until the metallicity of the normal mode reaches the critical

value, which is also relatively fast, due to the short lifetimes of massive stars.

Most of the constraints discussed above must be applied at relatively low redshift
(z ! 5). As a result they fix the parameters of Model 0. For the most part these are
unchanged, with one important exception. The metallicity of the IGM now receives two dis-

tinct contributions. The first from the massive mode, which will appear as a prompt initial
enrichment, and the second from the outflows of the normal mode which contribute at lower

redshifts. In principle, these contributions can be distinguished with precise abundance data
as a function of redshift. If the metallicity in the IGM originates from the massive mode,

we expect IGM abundances which are constant with respect to z. On the other hand, if

0.1 < M! < 100 Model 0

40 < M! < 100 Model 1

140 < M! < 260 Model 2a

270 < M! < 500 Model 2b
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FIG. 2.ÈInitial-Ðnal mass function of nonrotating primordial stars (Z \ 0). The x-axis gives the initial stellar mass. The y-axis gives both the Ðnal mass of
the collapsed remnant (thick black curve) and the mass of the star when the event begins that produces that remnant (e.g., mass loss in AGB stars, supernova
explosion for those stars that make a neutron star, etc. ; thick gray curve). We distinguish four regimes of initial mass : low-mass stars below D10 that endM

_as white dwarfs ; massive stars between D10 and D100 very massive stars between D100 and D1000 and supermassive stars (arbitrarily) aboveM
_

; M
_

;
D1000 Since no mass loss is expected for Z \ 0 stars before the Ðnal stage, the gray curve is approximately the same as the line of no mass loss (dottedM

_
.

line). Exceptions are D100È140 where the pulsational pair instability ejects the outer layers of the star before it collapses, and above D500 whereM
_

, M
_

,
pulsational instabilities in red supergiants may lead to signiÐcant mass loss (Bara†e et al. 2001). Since the magnitude of the latter is uncertain, lines are
dashed. In the low-mass regime we assume, even in Z \ 0 stars, that mass loss on the AGB leads to the star losing its envelope and becoming a CO or NeO
white dwarf (although the mechanism and thus the resulting initial-Ðnal mass function may di†er from solar composition stars). ““ Massive stars ÏÏ are deÐned
as stars that ignite carbon and oxygen burning nondegeneratively and do not leave white dwarfs. The hydrogen-rich envelope and parts of the helium core
(dashedÈdouble-dotted curve) are ejected in a supernova explosion. Below an initial mass of D25 neutron stars are formed. Above that, black holes form,M

_
,

either in a delayed manner by fallback of the ejecta or directly during iron core collapse (above D40 The deÐning characteristic of very massive stars isM
_

).
the electron-positron pair instability after carbon burning. This begins as a pulsational instability for helium cores of D40 As theM

_
(MZAMS D 100 M

_
).

mass increases, the pulsations become more violent, ejecting any remaining hydrogen envelope and an increasing fraction of the helium core itself. An iron
core can still eventually form in hydrostatic equilibrium in such stars, but it collapses to a black hole. Above or about andMHe \ 63 M

_
MZAMS \ 140 M

_
,

on up to or about a single pulse disrupts the star. Above 260 the pair instability in nonrotating stars results inMHe \ 133 M
_

MZAMS \ 260 M
_

, M
_

,
complete collapse to a black hole.

This includes all nuclei with odd charge above 14N: 23Na,
27Al, 31P, and the likeÈas well as neutron-rich isotopes like
29, 30Si, 33, 34, 36S, 38Ar, etc. Such nuclei all require a
neutron excess for their production. They are under-
produced here because of the low value of g in all regions of
all stars except the deep interiors of the most massive explo-
sions (thus, 54Fe has an appreciable yield in the 130 M

_model). Also absent is any appreciable nucleosynthesis for
A Z 66.

Elements above the iron group are absent because there
was no s- or r-process in our stars. The r-process requires
very rapid expansion timescales from extremely high tem-
perature, high entropy, and a large neutron excess. None of
these are realized here. The s-process requires a neutron
sourceÈsuch as 22Ne(a, n)25Mg or 13C(a, n)16OÈand

heavy-element ““ seed nuclei.ÏÏ There are no seed nuclei in
our Population III stars, and very little 13C or 22Ne is
present during helium burning. (Since we studied helium
stars, any possible production of 13C that might result from
the interpenetration of hydrogen envelope and convective
helium shell was not followed. This has never been demon-
strated to give neutrons in a massive star but might be
worth further investigation.)

The neutron excess is low in our stars because (1) the
assumed Population III initial helium core composition
(Table 1) implies a very small value of g at the end of helium
burning. This g comes about from the conversion of 14N
into 18O early in helium burning by 14N(a, c)18F(e`, l)18O.
The abundance of CNO is very low in Population III stars).
(2) Subsequent burning stages occur too rapidly and at too



MiniHalos and the onset of 
star formation  

Minimum Halo Mass: 

Onset of Star formation:

determines initial redshift for star 
formation 

Critical Metallicity: 

Efficiency of outflow 

Input Parameters

106, 107, 108, 109, 1011 M!

fb = 0.01

Zc Bromm & Loeb
Yoshida et al.



Normal Mode of Star Formation

– 13 –

and IGM as well as provide an ionizing source at high redshift), most observable constraints

are tied to the normal mode. Thus, we begin with a more detailed description of the normal
mode and its observational consequences.

We listed the main parameters of the model in the previous section. The model consists
of a superposition of a normal mode of star formation and an early massive mode at high

redshift, when the global metallicity in the star-forming structures is still very low (pop-
ulation III stars). We will describe this mode in section 5. We focus here on the normal
mode of star formation. We fix the mass range of star formation to minf = 0.1 M! and

msup = 100 M! so that the only parameter needed to define the IMF is its slope, namely x1,
which is usually estimated to be in the range 1.30 (Salpeter 1955) to 1.7 (Scalo 1986).

As noted above, we employ an exponentially decreasing SFR (which is representative of
elliptical galaxies) as parametrizations such as a Schmidt-law yield significantly poorer fits

to the observational data. Hence we take,

Ψ(t) = ν1 exp (−(t − tinit)/τ1) ,

where tinit is the initial age of the Universe at zinit where the star formation starts in the

model, τ1 is a timescale of the order of 2 − 3 Gyr and ν1 = f1mstruct(t)/τ1 with f1 being a
fraction governing the efficiency of the star formation.

Since many of the observational constraints used to fix the parameters pertain to rel-

atively low redshift, we performed a detailed scan of the parameter space including only
the normal mode. The parameter grid was chosen to be: Mmin = 106, 107 , 108, 109, and

1011 M!; ε = 0, 10−3, 2 × 10−3, 3 × 10−3, 5 × 10−3, 7 × 10−3, 10−2, 2 × 10−2 and 3 × 10−2;
ν1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 Gyr−1; τ1 = 2.2, 2.4, 2.6, 2.8, 3.0, 3.2 Gyr; x1 = 1.3,

1.35 and 1.4. In all cases, we have assumed that the onset of star formation begins when the
baryon fraction in structures is 1%. We have tested that this initial fraction has a very weak
impact on the results concerning the normal mode of star formation. It is on the other hand

of great importance for the population III stars and its effect will be studied in section 5.
One should also note that there are additional parameters associated with the rate of type

Ia supernovae. These are directly constrained by observations and will be fixed in section 4.

To determine the parameters which best fit the observations, we performed χ2 analysis
over the parameter grid. Included in the χ2 analysis are six sets of observational data: (1)

The observed cosmic star formation rate up to z ∼ 5 (Hopkins 2004). The data were binned
and averaged in redshift leading to somewhat larger observational uncertainties at a given

redshift than typically reported for a single measurement; (2) The observed rate of type

+ Salpeter IMF

Eg. Hopkins 
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Ionization
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Very Massive Stars

Generally assumed that the first 
generation of stars were very massive

Pair-instability supernovae 

 total disruption 
 significant metal production 
 difficulty to reionize

300+ solar mass stars 

 total collapse 
 no metal production 
 efficient at reionization

Heger & Woosley







Neutrino Production

Totani & Sato (1995) + Yoshi (1996)

Ando, Sato, & Totani (2003) Ando (2004)

Kaplinghat, Steigman, & Walker (2000)

Strigari et al. (2004, 2005)

Iocco et al. (2005)

There is an accumulated flux of 
supernova relic neutinos

dFα

dE
=

∫ zi

0
dz (1 + z)

∣∣∣∣
dt

dz

∣∣∣∣
∫ Mmax

Mmin

dm φ(m) ψ (t − τ (m)) Nνα(m)
dPα

dE′



Calculation Inputs

Final State

neutron star

black holes

PISN

black Holes

Average neutrino energy

  

    

    

8M! < m < 30M! Eν = 3 − 5 × 1053ergs

〈Eνe〉 = 13.3MeV

〈Eν̄e〉 = 15.3MeV

〈Eνx〉 = 20.0MeV

m < 100M! Eν ∼ .16(m − 20M!)

Eν = 3 − 5 × 1053ergs, but〈Eν〉 = 1.2MeV

Eν = 0.3m

Totani et al.
Keil et al.
Iocco et al. 
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Λ-CDM cosmology   

explosion than core collapse supernovae, however few neutrinos are emitted and with very
low energies such that they would not be observed [18]. We address this issue further in
section 3. It has been noted that if the collapse to a black hole proceeds without rotation,
the neutrino luminosity will be diminished by ∼ 2 orders of magnitude [20], so this is really an
upper limit to the flux assuming rotation. Although several studies find a distinct hierarchy
in the partitioning of neutrino luminosity among the species during the different luminosity
phases of core collapse, equipartition of the total energy emitted by the star is generally
accepted [9, 11, 12]. For a comparison of luminosity hierarchies found in recent simulations,
see Keil et al. [19].

In black hole formation, the neutrino luminosity is nearly constant for the first few sec-
onds until the event horizon overtakes the neutrinospheres. Once the neutrinospheres are
inside the event horizon, the luminosity consists of neutrinos with lower average energies
escaping from the outer layers of the star [20, 19]. We assume that each electron neutrino
carries an average energy 〈Eνe〉 = 13.3 MeV, which is a reasonable approximation for the
average neutrino energy over the two luminosity phases of core collapse to a black hole.
For supernovae which do not collapse to black holes, this energy is consistent with recent
simulation data [19]. The charged current reactions that prevent neutrinos from emerging
from the star are νen → pe− and ν̄ep → ne+. The different trapping reactions result in
different neutrinosphere radii, and therefore different average energies for νe and ν̄e. We as-
sume 〈Eν̄e〉 = 15.3 MeV which is the average energy over the two luminosity phases as above,
following [13]. The other species, denoted νx, undergo only neutral current interactions. The
mechanism that governs their average temperature at emission is more complicated, but the
generally accepted hierarchy is 〈Eνe〉 < 〈Eν̄e〉 < 〈Eνx〉. We have taken 〈Eνx〉 = 20 MeV. The
total number of να emitted by a star during core collapse is given by

Nνα =
Ecc

〈Eνα〉
. (3)

We discuss the sensitivity of our results to these choices in section 5 below.
The neutrino spectra can be described by a normalized Fermi-Dirac distribution,

dPα

dE ′
=

2

3ζ3T 3
α

E ′2

eE′/Tα + 1
(4)

where Tα = 180ζ3〈Eνα〉/7π4 is the effective neutrino temperature taken to be independent
of the mass of the star. We assume a flat ΛCDM cosmology with

∣

∣

∣

∣

dt

dz

∣

∣

∣

∣

=
9.78 h−1 Gyr

(1 + z)
√

ΩΛ + Ωm(1 + z)3
(5)

where ΩΛ = 0.73, Ωm = 0.27, and h = 0.71 [1].

3 Star Formation Models

The cosmic star formation histories we consider here have been adopted from detailed chem-
ical evolution models [4, 5]. These models are bimodal and are described by a birthrate
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escaping from the outer layers of the star [20, 19]. We assume that each electron neutrino
carries an average energy 〈Eνe〉 = 13.3 MeV, which is a reasonable approximation for the
average neutrino energy over the two luminosity phases of core collapse to a black hole.
For supernovae which do not collapse to black holes, this energy is consistent with recent
simulation data [19]. The charged current reactions that prevent neutrinos from emerging
from the star are νen → pe− and ν̄ep → ne+. The different trapping reactions result in
different neutrinosphere radii, and therefore different average energies for νe and ν̄e. We as-
sume 〈Eν̄e〉 = 15.3 MeV which is the average energy over the two luminosity phases as above,
following [13]. The other species, denoted νx, undergo only neutral current interactions. The
mechanism that governs their average temperature at emission is more complicated, but the
generally accepted hierarchy is 〈Eνe〉 < 〈Eν̄e〉 < 〈Eνx〉. We have taken 〈Eνx〉 = 20 MeV. The
total number of να emitted by a star during core collapse is given by

Nνα =
Ecc

〈Eνα〉
. (3)

We discuss the sensitivity of our results to these choices in section 5 below.
The neutrino spectra can be described by a normalized Fermi-Dirac distribution,

dPα

dE ′
=

2

3ζ3T 3
α

E ′2

eE′/Tα + 1
(4)

where Tα = 180ζ3〈Eνα〉/7π4 is the effective neutrino temperature taken to be independent
of the mass of the star. We assume a flat ΛCDM cosmology with

∣

∣

∣

∣

dt

dz

∣

∣

∣

∣

=
9.78 h−1 Gyr

(1 + z)
√

ΩΛ + Ωm(1 + z)3
(5)

where ΩΛ = 0.73, Ωm = 0.27, and h = 0.71 [1].

3 Star Formation Models

The cosmic star formation histories we consider here have been adopted from detailed chem-
ical evolution models [4, 5]. These models are bimodal and are described by a birthrate

3



Normal Mode Fluxes

0 2 4 6 8 10
0

2.5

5

7.5

10

12.5

15

17.5

E! (MeV)

   
   

   
(c

m
-2

 s-
1  M

eV
-1

)
dF dE



Neutrino Flux for the massive 
mode of model 1
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metallicity is produced by the massive mode



Neutrino Flux for the very 
massive pop III stars of model 2
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Total Neutrino Fluxes
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Detectability

SuperK flux limit: 1.2cm−2s−1 for Eν > 19MeV
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Figure 10: Total flux of thermonuclear neutrinos from Model 2.1.

In Figure 11, we show the observable flux

F (Ethresh) =

∫ ∞

Ethresh

dF

dE
dE (22)

as a function of detector threshold energy. While the fluxes are quite appreciable at low
threshold energies, they in fact remain relatively high at larger energies due to the large
SFR associated with Model 0. Indeed, in all of our stage 2 models, our predicted flux above
19.3 MeV already exceeds the current bound of 1.2 cm−1s−1 from SuperK [23]. The detailed
flux predictions are given in Table 4, where we show the detectable flux for the viable energy
windows at SK and SNO. Although SRN’s will likely not be seen at SNO given these flux
levels, in many of our models the SK bound is saturated by the expected flux, indicating that
SRN’s may be observed in the near future. This is in agreement with previous arguments
made in [12] based on simplified evolution models as well as arguments based on SN1987A
[25].

Despite the large fluxes displayed in Table 4 relative to the SK limit [23], one can not
conclude that the stage 2 models considered have already been excluded by experiment.
There are of course many uncertainties built into our chemical evolution models as well as
uncertainties in the adopted neutrino physics. For example, one of the differences between
our stage 1 and stage 2 models, is our choice of the IMF. In stage 1 models, the slope
of the IMF was fixed at 1.7 whereas in stage 2 models, it is fixed at 1.3. The impact of
this difference lies in the strong suppression of massive stars, i.e. the precursors of neutrino
producing supernovae. As one can see from the table, the steeper IMF sufficiently suppresses
the neutrino flux to satisfy the SK bound.

Another key uncertainty is the choice of the mass range for black hole formation in the
normal mode. Black hole formation contributes significantly to the neutrino flux from the
normal mode despite the IMF favoring lower mass stars. As a result, our conclusions are
sensitive to both the number of stars collapsing to black holes (via the normal mode IMF)
and the number of neutrinos emitted during collapse. If black hole formation begins to occur
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Model comparisons to flux limit
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Model SK Flux SNO Flux

1.0 0.40 0.11
1.1 0.40 0.11
1.2a 0.40 0.11
1.2b 0.40 0.11
2.0 1.8 0.47
2.1 1.8 0.47
2.1osc 3.2 1.4
2.1e 1.9 0.49
2.2a 1.9 0.48
2.2ae 1.9 0.49
2.2b 1.8 0.47
2.2bosc 3.2 1.4

Table 4: Predicted fluxes in cm−2s−1 in the models considered here. Results are given for
electron antineutrinos with energies Eν̄e > 19.3MeV for SK and for electron neutrinos with
22.5MeV< Eνe < 32.5MeV for SNO.

6 Effects of Oscillations

Due to our assumption of equipartition of energy among the neutrino species, oscillation
will only affect the flux if different species emerge from the explosion with different aver-
age energies. Indeed most supernova model calculations do show a hierarchy of neutrino
energies, and because the energies of Eν̄µ and Eν̄τ are generally higher than Eν̄e , the effect
of oscillations will in general increase the observable flux. The effects of oscillations on the
neutrino background were considered previously in [26].

Figure 13 shows the total flux of electron antineutrinos from Model 2.1 both with and
without oscillations, where we use the neutrino average energies discussed in section 2 and
maximal mixing has been assumed. Although the total number of electron antineutrinos
arriving at Earth is smaller due to oscillations by ∼ 16%, the flux of neutrinos with energies
greater than ∼ 9.5 MeV is larger. The differential flux for Model 2.1 with and without
oscillations is shown in Fig. 13. Note that the solid curve here is identical to that in Fig. 8.
Here we clearly see the individual peaks due to the massive mode at <∼ 1 MeV and normal
mode at ∼ 3 MeV.

For Eν > 19.3 MeV, oscillation effects would increase the observable flux at SK by as much
as 78%. This effect is seen in Fig. 11 where one sees that the integrated flux with oscillations
(dashed curve) exceeds the flux when oscillations are ignored for threshold energies greater
than about 6 MeV. The effect of oscillations on the SK observable flux is seen in Table 4
for the models labeled 2.1osc and 2.2bosc. Reconciling these fluxes with the SK limit would
require a further drop in the average neutrino energy or a tightening of the assumed neutrino
energy hierarchy. Similarly, the flux of electron neutrinos potentially observable at SNO is
increased by almost 200% in the energy window 22.5MeV< E < 32.5MeV. Although our flux
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All models 
exceed upper 

limit!!

F(19.3) < 1.2 cm-2s-1 ⇒ 
<Eν> < 13.3 MeV



A Non-burst model

Rather than a rapid burst of pop III 
stars - an early more drawn out 
population

start at z = 30

Star formation rate: 
Ψ2(t) = ν2MISM exp (−ZIGM/Zcrit) ,







Pop III neutrino fluxes
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Total Neutrino Fluxes
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Total Neutrino Fluxes

0 1 2 3 4 5
0

200

400

600

800

1000

E! (MeV)

   
   

   
(c

m
-2

 s-
1  M

eV
-1

)
dF dE

2b



Summary

Reionization and metal enhancement 
play a role in determining the nature  
of early star formation

Star formation at a redshift of 3-5 
is greatly enhanced relative to today

Neutrino signature should be 
observable!!

Though there is a strong sensitivity 
to SN neutrino energetics


